The roots of Blue Carbon: Effects of soil properties on stilt root development in *Rhizophora stylosa*

Anne Ola & Catherine E. Lovelock

Blue Carbon

 Mangroves have large carbon (C) stocks in sediments, 5 - 10.4 Pg (Atwood et al. 2017)

 Root biomass is a major contributor to these C sinks (McKee et al. 2007)

Plasticity and soil bulk density

- Plasticity of root development in response to environmental conditions (Zolla *et al.* 2010)
- Soil Bulk Density (BD): g soil per cm³ volume

Mangrove soil bulk density

- Large range of soil BD in mangroves
- For example, 0.12 g cm⁻³ in the US (Genthner *et al.* 2013) to 1.37 g cm⁻³ in Australia (Lovelock *et al.* 2014)

High BD mineral soil

Low BD organic soil

Schematic drawing of the effect of soil bulk density (BD) on soil properties.

Shoot growth

Biomass↓ Number of leaves↓ Height↓ Stem volume↑

Root traits

Length↓ Diameter↑ Density:

- Surface rooting
- Lateral root proliferation
 Anatomy
 C:N ratio

Schematic drawing of the effect of BD on root growth.

Contrasting responses -field and lab

Aim and Hypothesis

Aim:

To assess the morphological and anatomical response of *R. stylosa* stilt roots upon exposure to soils of different BDs.

Hypothesis:

1) BD has an effect on root traits.

2) The effect of soil BD on root growth is also reflected on anatomical features.

Burial: 6 month

BD (g cm ⁻³)	Peat (g)	Perlite (g)	Sand (g)
0.4	10.6	14.3	156.6
0.8	10.6	7.3	345.6
1.2	10.6	0.4	529.2

(Root traits:	C & N		
	Diameter	Volum	е	
	Biomass	Tissue	density	
	Length ([•] Iower order		primary,	

Results

Loose soil (0.4 g cm⁻³) b) a) c) 16.8 cm 12 *p*=0.027* *p*=0.014* *p*=0.002* 29 Primary root diameter (mm) 16 Primary root length (cm) 5 Total DVV (g) 2 44 00 -_ 12 1 1 5 Dense soil (1.2 g cm⁻³) 9 5 11.3 cm 10 -1 00 0.8 1.2 1.2 0.8 1.2 0.4 0.4 0.8 0.4 BD (g cm-3) BD (g cm-3) BD (g cm-3)

Soil BD affects primary root length and diameter, as well as root biomass of *R. stylosa* stilt roots.

Results

Stepwise linear regression analysis suggests root C % is influenced by log(tissue density) (p=0.03). C:N is not only influenced by log(tissue density) (p=0.007) and primary root diameter (p=0.025).

- Fibrous strand size/phloem area (μm²)
- ← Cortex thickness (mm)
- ← Aerenchyma lacunae (% area)
- ← Vascular tissue cell wall (% area)
- ← Vascular cylinder (mm²)

Results

Soil BD affects anatomical features (aerenchyma, fibrous strands) of stilt roots, features important in root aeration and structural support, respectively; and influence tissue density and composition.

Conclusion

- Stilt roots of *R. stylosa* are strongly influenced by variation in soil BD.
- Soil BD also affects root anatomical features such as aerenchyma and fibrous strands found within the vascular circle.
- Tissue density influences root C %, and together with primary root diameter the C:N ratio.

Variations in soil type and stilt root traits are

likely to influence C cycling in Rhizophora forests.